
Automatic Generation of UTP
Models from Requirements in
Natural Language

10th, Apr. 2016, InSTA2016	

Satoshi Masuda, IBM Research – Tokyo
Tohru Matsuodani, Debug Engineering Research Laboratory
Kazuhiko Tsuda, University of Tsukuba

InSTA 2016	

2

Contents
I.  Introduction
II. Background and Approach

A.  UML(*) Testing Profile (UTP)
B.  Natural Language Processing

III. Related Works
IV. Automatic Generation of UTP

Models from Requirements
V.  Experiments and Evaluations
VI. Conclusion

* UML is a registered trademark of Object Management Group Inc.

InSTA 2016	

3

I. Introduction

Summary
§  Requirements in language that

is considered natural English
§  Focusing on descriptions of

test cases in UTP test behavior
§  Automatic generation test

models from requirements

InSTA 2016	

4

§ UTP is the definition of the modeling test from
requirements analysis for software testing. [3]

[3] Object Management Group, "UML Testing Profile(UTP) Version 1.2 ", http://www.omg.org/spec/UTP/1.2/
[5] OMG, UML Testing Profile Version 1.2, Object Management Group Std., 2014.

Fig. 1. Generation of UTP from requirement by editing the figure in [3]

I. Introduction

Requirements
in natural language

UML
models

interprets

derive

System Code
Derivation

System (Under Test)

UTP
models

interprets

derive

Test Code
Generation

Test Execution

System
Development
Engineer

requirements, use cases,
interfaces, type definitions

Test
Engineer

Automatic
Generation

InSTA 2016	

5

§ UTP has test architecture, test behavior, test
data, and time concepts as the test models.

[3] Object Management Group, "UML Testing Profile(UTP) Version 1.2 ", http://www.omg.org/spec/UTP/1.2/

Fig. 2. UTP definition overview

Discussing
in this
paper

II. Background and Approach - UTP

InSTA 2016	

6

§ Natural Language Processing (NLP) techniques
include parsing, morphological analysis.

§ For example, the sentence consists of NP and
VP, and NP consists of DT and NN. S:
sentence, NP: noun phrase, VP: verb phrase,
NN: noun, VBZ: verb behavior,

Fig. 4. Parse tree of ’The system stores the new link.’

II. Background and Approach - NLP

The system stores the new link.	

DT NN VBZ DT JJ NN	

NP 	

NP VP	

S	

InSTA 2016	

7

§ Example UTP test cases

Fig. 3. Example UTP test cases for editing the figure in [6]

II. Background and Approach

Class
Action

Attribute

InSTA 2016	

8

II. Background and Approach

§ S are sentences of the requirements in natural languages,
§ U (cl, ac, ar) are activities of the sequence diagram in UTP
test cases which consist of classes (cl), actions (ac), and
attributes (at), and

§ G are generation rules from S (requirements) into
U(classes, actions, and attributes).

　	

generation
rules

S G = U(cl,ac,at) ・	

InSTA 2016	

9

III. Related Work

　	

§  Test Case Generation from UML Models
Automatic Test Case Generation from UML Models

Monalisa Sarma Rajib Mall

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

WB 721302, Indian Institute of Technology Kharagpur
monalisas@cse.iitkgp.ernet.in

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

WB 721302, Indian Institute of Technology Kharagpur
rajib@cse.iitkgp.ernet.in

Abstract
This paper presents a novel approach of generating

test cases from UML design diagrams. We consider

use case and sequence diagram in our test case

generation scheme. Our approach consists of

transforming a UML use case diagram into a graph

called use case diagram graph (UDG) and sequence

diagram into a graph called the sequence diagram

graph (SDG) and then integrating UDG and SDG to

form the System Testing Graph (STG). The STG is then

traversed to generate test cases. The test cases thus

generated are suitable for system testing and to detect

operational, use case dependency, interaction and

scenario faults.

Keywords: Software testing, UML models, Object-

oriented system

1. Introduction
With the increasing complexity and size of software
applications more emphasis has been placed on object-
oriented design strategy to reduce software cost and
enhance software usability. However, object-oriented
environment for design and implementation of
software brings about new issues in software testing.
This is because the important features of an object
oriented program, such as, encapsulation, inheritance,
polymorphism, dynamic binding etc. create several
testing problems and bug hazards [3].

Last decade has witnessed a very slow but steady
advancement made to the testing of object-oriented
systems. Most reported research propose test case
generation based on program source code. However,
generating test cases from program source code,
especially for the present day complex applications is
very difficult and ineffective. The reason being that the
design aspects are very difficult to extract from the
code. One significant approach is the generation of test
cases from UML models. The main advantage with this
approach is that it can address the challenges posed by
object-oriented paradigms. Moreover, test cases can be
generated early in the development process and thus it
helps in finding out many problems in design if any
even before the program is implemented. However,

selection of test cases from UML model is one of the
most challenging tasks [1].

In this paper we have proposed an automatic test
case generation method using UML [10] models. We
consider use case and sequence diagrams as a source of
test case generation. Our generated test suite aims to
cover operational and use case dependency faults,
various interaction as well as scenario faults. For
generating the different components of a test case, i.e.
input, expected output and pre- and post- condition we
also use class diagram and data dictionary along with
use case and sequence diagrams. We consider OCL 2.0
[13] in our work.

The rest of the paper is organized as follows.
Related work is discussed in Section 2. Our approach
is discussed in Section 3. In Section 4, coverage
criteria, generation of test cases from the graph is
presented. Implementation of our approach is discussed
in Section 5. Finally, Section 6 concludes this paper.

2. Related Work
Several research attempts have been reported on
scenario coverage based system testing [5, 6, 11].
These attempts are basically black box approaches and
do not take into consideration the structural and
behavioral design into consideration. Further, these
work [5, 6, 11] require using their proposed custom
modeling notations. Fröhlick and Link [5] construct a
statechart model in which the states are abstractions
representing the interval between two successive
messages sent to the system by a user. The coverage
attempted is transition coverage of the statechart
model, which in essence is the coverage of all
interactions (message exchanges) of the user with the
system. Hartmann et al [6] proposed an automatic test
case generation methodology based on the interactions
between the system and its user. To model interactions,
they semi-automatically convert the textual description
of use cases into activity diagrams. Their approach
manually annotates the design before the test case
generation. Riebisch et al. [11] generate system-level
test cases from usage models.

Briand and Labiche [4] describe the TOTEM
(Testing Object orienTed systEms with the unified
Modeling language) system testing methodology.

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI

190

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.26

190

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.26

196

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.26

196

SSDG is the set of all nodes representing various
states of operation scenarios; Each node basically
represents an event.

∑SDG
 is the set of edges representing transitions

from one state to another.
SDGq0 is the initial node representing a state from

which an operation begins.
FSDG is the set of final nodes representing states
where an operation terminates.

In order to formulate a methodology, we define an
operation scenario as a quadruple, aOpnScn: <ScnId;
StartState; MessageSet; NextState>. A unique number
called ScnID identifies each operation scenario. Here,
StartState is a starting point of the ScnId, that is, where
a scenario starts. MessageSet denotes the set of all
events that occur in an operation scenario. NextState is
the state that a system enters after the completion of a
scenario. This is the end state a use case. It may be
noted that an SDG has a single start state and one or
more end state depending on different operation
scenarios.

An event in a MessageSet is denoted by a tuple,
aEvent: <messageName; fromObject; toObject
[/guard]> where, messageName is the name of the
message with its signature, fromObject is the sender of
the message and toObject is the receiver of the
message and the optional part /guard is the guard
condition subject to which the aEvent will take place.
An aEvent with * indicates it is an iterative event.

Fig. 2(a) shows a sequence diagram associated with
the use case PIN Authentication in a usual ATM
system amd its five scenarios is shown in Fig. 2(c).
The SDG of SD in Fig. 2(a) is shown in Fig. 2(b).
 It is evident that each node in the SDG is mapped to
an interaction with or without a guard between two
objects oi and oj through a message mk. Information
regarding this needs to be stored in its corresponding
node in the SDG. The following data needs to be
stored: attributes of the corresponding objects at that
state, arguments in the method, and predicate of the
guard if any, involved in the interaction. This
information is collected from the class diagram. In
addition to this a node also stores range of values of all
attributes of the objects at the state. This information
can be obtained from the data dictionary associated
with the given design. Further, a node stores the
expected results for an occurrence of an event.

Create Order

Shipping

Process Order

Update Stock

(A2)

(a) A use case diagram (UCD)

U1

Manger

U2

U3

U4 (A3)

Inventory
System

(b) Use case diagram graph (UDG)

(A1)
Customer

A3

U1

U2

U3A2

U4

A1

Fig. 1 Creating a UDG from a UCD

a : cardReader b : sessionMgr c : displayMgr d : keyReader e : aBank

cardInfo()
m1()

c1()[!validATMcard]
eject()m2()

checkCard()
m3()

status
[status.isStolen]

c2()
m4() retain()

[status.closeAccount]
eject()m2()

[!validPIN && try < 4]

c3()

requestPIN()

m5()

c4()

readPIN()
m6()valuePIN

verifyPIN()
m7()

displayHello()

[!validPIN]c5()

m8()

x x

x

x

x

begin
session

m2() eject()

s1

StateX

s4

s7

s6

s2

s9

s5

s3

s8
s10

StateY

StateZ
 (a) Sequence diagram of PIN Authentication use case in an ATM system (b) SDG of the sequence diagram in

<scn1
 StateX
 s1: (m1, a, b)
 s2: (m2, b, a) |c1
 StateY>

<scn2
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s4: (m4, b, a)|c2
 StateY>

<scn3
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s5: (m2, b, a)|c3
 StateY>

<scn4
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s6: (m5, b, c)|c4*
 s7: (m6, b, d)|c4*
 s8: (m7, b, e)|c4*
 s9: (m2, b, a)|c5 StateY>

<scn5
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s6: (m5, b, c)|c4*
 s7: (m6, b, d)|c4*
 s8: (m7, b, e)|c4*
 s10: (m8, b, c) StateZ>

(c) Five operation scenarios represented in the form of quadruples

Fig. 2 Illustration of creating SDG
3.3 Integration of UDG and SDG into STG
After the creation of UDG and SDG the next step is to
integrate these two graphs into a single graph called the

system testing graph (STG). In the following, we
define an STG.
Definition of STG:
 >∑=< FqSSTG ,,,, 0δ where

192192198198

InSTA 2016	

to be derived. This was clearly considered too complex for
software engineers and required significant help from the au-
thors of this paper, and many iterations and meetings. Our
conclusion is that the adoption of behavioural modelling,
at the level of detail required for automated testing, is not
a practical option for system test automation except when
detailed behavioural models are already used by software
engineers for other purposes, e.g. software design.

Test Data Generation. Without behavioral modelling,
most approaches mainly exploit NL requirements specifica-
tions in which it is hard to extract test data for executable
test cases. Test cases derived in such a way typically require
significant manual intervention. For instance, even the sim-
plified test case in Table 1 has 50 variable assignments to be
manually entered as test input. Automatically generating
test data, and not just abstract test scenarios, is therefore
important.

Deployment of the Software under Test. Execution
of test cases for a system like BodySense entails the deploy-
ment of software under test on the target environment. To
speed up software testing, test case execution is typically au-
tomated through test scripts invoking test driver functions.
These functions simulate sensor values and read computa-
tional results from a communication bus. Any test gener-
ation approach should generate appropriate functions and
test data in a processable format for the test driver. For in-
stance, the test drivers in BodySense need to invoke driver
functions (e.g., SetBus) to simulate occupancy on a seat.

3. OVERVIEW OF THE APPROACH
Figure 1 shows the main steps of the approach. Our goal

in UMTG is to address the challenges given in Section 2. In
UMTG, behavioral information and high-level operation de-
scriptions are generated from use cases (the first challenge),
test inputs are generated through constraint solving (the
second challenge), while test driver functions corresponding
to informal descriptions and oracles implementing the post-
conditions of the use case scenario are generated through
mapping tables provided by the software engineer (the third
challenge).

The software engineer elicits requirements with RUCM
(Step 1). The domain model is manually created as a UML
class diagram (Step 2). UMTG automatically checks if the
domain model includes all entities mentioned in the use cases
(Step 3) and tool support is provided to guide engineers in
completing the domain model. NLP is used to extract do-
main entities from the use cases. Missing entities are shown
to the software engineer who refines the domain model (Step
4). Steps 3 and 4 are iterative: the domain model is refined
until it is complete.

Once the domain model is completed, textual descriptions
of pre, post and guard conditions in the use cases are au-
tomatically extracted (Step 5) to be reformulated as OCL
constraints by engineers (Step 6). UMTG further processes
the use cases with the OCL constraints to generate a Use
Case Test Model for each use case (Step 7). A generated
test model is a directed graph that explicitly captures the
implicit behavioural information in the corresponding use
case.

UMTG relies on constraint solving for OCL constraints
that are attached to the nodes of the test models. The goal
is to generate test inputs associated with use case scenarios
(Step 8). We use the term use case scenario for a sequence of

Constraints List

OCL Constraints

Use Case
Test
Model

3. Evaluate the
Model Completeness

10. Generate Test Cases

2. Model the Domain

6. Specify Constraints

List of
Missing
Entities5. Identify Constraints

4. Re)ne Model

7. Generate the
Use Case Test Model

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

Use Cases

Domain
Model

Test Cases

1. Elicit Use Cases

 NO ERROR
TEMPARATURE IS VALID
MEASUREMENTS IN LIMITS
. . .

 NO ERROR: errNo = 0
TEMPARATURE IS VALID: t >= 0
MEASUREMENTS IN LIMIT..

activity automated by
UMTG

1. Step

activity performed by
the software engineer

Legend:

data 7ow

Mapping Table

8. Generate
Scenarios and Inputs

9. Specify Mapping Table

1

2

3

4

1

2

5

6

1

2

3

4

4

3

2

1

5

6

1. Step

Use Case
Scenarios

Object
Diagrams

Figure 1: Overview of the UMTG Approach

use case steps that starts with a use case precondition and
ends with a postcondition of either a basic or alternative
flow. Test inputs cover all paths in the testing model and
therefore all possible use case scenarios.
The software engineer provides a mapping table that maps

high-level operation descriptions and test inputs to the con-
crete driver functions and inputs that should be executed
by the test case (Step 9). Executable test cases are auto-
matically generated through the mapping table (Step 10).
If the test infrastructure and hardware drivers change in the
course of the system lifespan, then only the mapping table
needs to change.
The rest of the paper provides a detailed description of

each step of UMTG shown in Figure 1, with a focus on how
we achieved automation.

4. REQUIREMENTS ELICITATION
This section briefly introduces RUCM, a use case format

that provides restriction rules and specific keywords con-
straining the use of natural language in use cases. For de-
tails, the reader is referred to [31]. The goal of RUCM is to
reduce ambiguity and to facilitate automated analysis of use
cases. Controlled experiment results show that the restric-
tion rules in RUCM are overall applicable and beneficial [31].
Since RUCM was not originally designed for test generation,
we introduce some extensions to RUCM for UMTG.

387

10

III. Related Work

　	

§ Automatic Generation of
System Test Cases from Use
Case Specifications

Automatic Generation of System Test Cases from Use

Case Specifications

Chunhui Wang

†
, Fabrizio Pastore

†
, Arda Goknil

†
, Lionel Briand

†
, Zohaib Iqbal

†‡

†
Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

‡
Quest Lab, National University of Computer & Emerging Sciences (FAST NU), Islamabad, Pakistan

{chunhui.wang,fabrizio.pastore,arda.goknil,lionel.briand}@uni.lu zohaib.iqbal@nu.edu.pk

ABSTRACT
In safety critical domains, system test cases are often derived
from functional requirements in natural language (NL) and
traceability between requirements and their corresponding
test cases is usually mandatory. The definition of test cases
is therefore time-consuming and error prone, especially so
given the quickly rising complexity of embedded systems in
many critical domains. Though considerable research has
been devoted to automatic generation of system test cases
from NL requirements, most of the proposed approaches re-
quire significant manual intervention or additional, complex
behavioral modelling. This significantly hinders their appli-
cability in practice.

In this paper, we propose Use Case Modelling for System
Tests Generation (UMTG), an approach that automatically
generates executable system test cases from use case spec-
ifications and a domain model, the latter including a class
diagram and constraints. Our rationale and motivation are
that, in many environments, including that of our industry
partner in the reported case study, both use case specifica-
tions and domain modelling are common and accepted prac-
tice, whereas behavioural modelling is considered a di�cult
and expensive exercise if it is to be complete and precise. In
order to extract behavioral information from use cases and
enable test automation, UMTG employs Natural Language
Processing (NLP), a restricted form of use case specifica-
tions, and constraint solving.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
NLP, Use Case Specifications, Test Cases Generation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION
The complexity of embedded software in safety critical

domains, e.g. automotive, has significantly increased over
the years. System test cases in these domains are often
manually derived from functional requirements in natural
language (NL). One important motivation is to ensure clear
traceability between requirements and system test cases. As
a result, the definition of test cases is time-consuming and
challenging under time constraints. In this context, auto-
matic test generation not only reduces the cost of testing
but also helps guarantee that test cases properly cover all
requirements, a very important objective in safety critical
systems and the standards they need to comply with.
The benefits of automatic test generation are widely ac-

knowledged today and there are many proposed approaches
in the literature [10]. Many approaches [26] require that
system specifications be captured as UML behavioural mod-
els such as activity diagrams [19], statecharts [24], and se-
quence diagrams [21]. In modern industrial systems, these
behavioural models tend to be complex and expensive if they
are to be precise and complete enough to support test au-
tomation, and are thus often not part of development prac-
tice. There is work [31] [29] [30] that generates test models
(UML) from NL requirements, but these generated models
need to be manually edited to enable test automation, thus
again creating scalability issues. In approaches generating
test cases directly from NL requirements [32] [25] [12], test
cases are not executable and need significant manual inter-
vention, especially regarding test inputs and outputs. In
contrast, our goal in this paper is to enable fully automated
test generation from NL requirements, with no behavioural
modelling and minimal domain modelling. Our motivation
is to rely, to the largest extent possible, on practices that
are already in place in many environments developing em-
bedded systems, including the industry partner with whom
we performed the case study reported in this paper. Use
case specifications are widely used for communicating re-
quirements among stakeholders and, in particular, facilitat-
ing communication with customers. Domain modelling is a
common way to clarify the terminology and concepts shared
among all stakeholders and thus avoid misunderstandings.
In this paper, we propose Use Case Modelling for Sys-

tem Tests Generation (UMTG), an approach that aims at
generating executable system test cases by exploiting the be-
havioural information implicitly described in use case spec-
ifications. UMTG requires a domain model of the system,
which enables the definition of constraints that are used by
UMTG to generate test data and oracles. Use case specifi-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ISSTA’15, July 13–17, 2015, Baltimore, MD, USA

c� 2015 ACM. 978-1-4503-3620-8/15/07...$15.00

http://dx.doi.org/10.1145/2771783.2771812

385

InSTA 2016	

11

IV. Automatic Generation of UTP Models from Requirements

　	

§ From the first step of the flow, we get parsed text, parts-of-speech,
and dependency from requirements by using natural language
processing techniques.

§  In the next steps, we generate UTP models from them by applying
rules of generation.

Rules of
generation	

Requirements in
natural language	

UTP models

Natural Language
Processing	

Generation	

Parsed text	 Part of
speech Dependency	

Fig. 5. Automatic generation of UTP models from requirements in natural language

InSTA 2016	

12

§ Generation rules
• Rule #1: Class generation rule

a.  Subject is generated to class
b.  Verb is generated to action
c.  Complement is argument

e.g. “The user selects the option in menu.”

Subject Verb Complement

IV. Automatic Generation of UTP Models from Requirements

InSTA 2016	

13

§ Generation rules
• Rule #1: Class generation rule

d.  Structure of text as tree bank expression
as (2)

S (NP ((*)(NN1) (*)) VP (VBZ)(NP ((*)(NN2)(*))) 　　 (2)

IV. Automatic Generation of UTP Models from Requirements

InSTA 2016	

14

§ Generation rules (continued)

• Rule #2: Messages between classes
generation rule
a.  When NN1 and NN2 have already

been determined as classes, VBZ is
the message from NN1 to NN2

• Rule #3: Order of sequence is equal to
order of description in the requirements

IV. Automatic Generation of UTP Models from Requirements

InSTA 2016	V. Experiments and Evaluations - Implementation

§  Implementation
– Algorithm

15
 	

 * (subject) * (verb) * (adjective) *
cardinality:
[0..] [1..] [0..] [1..] [0..] [1..] [0..]

 * NN1 * VBZ * NN2 *

NP

NP VP

S

Fig. 6. Parse tree of a generation rule

definition of the class diagrams is the same as the related
work. We then can reuse the rules in our generation technique.
In UTP models, however, messages of the sequences are
necessary. In order to get messages of the sequences, it is
necessary to get actions between the classes. We develop new
rules to get action information between classes. The approach
toward the rules is that the verb between the names of classes
is the actions between the classes.

UTP model generation rules are:
• Rule #1: Class generation rule

a. Subject is generated to class
b. Verb is generated to action
c. Complement is argument
d. Structure of text as tree bank expression as (2). The

asterisk in the parenthesis means any part-of-speech.
When there are requirements texts, which have this
structure,
∗ NN1 is generated to class
∗ VBZ is generated to action
∗ NN2 is generated to attribute

S(NP ((∗)(NN1)(∗))V P (V BZ)(NP ((∗)(NN2)(∗)))
(2)

• Rule #2: Messages between classes generation rule
a. When NN1 and NN2 have already been determined

as classes, VBZ is the message from NN1 to NN2
• Rule #3: Order of sequence is equal to order of descrip-

tion in the requirements
Figure 6 shows parsed tree of (2).

V. EXPERIMENTS AND EVALUATIONS

A. Implementation

We implemented a proof-of-concept prototype of our ap-
proach. We used the English Natural Language Processing
parser [2] and dependency analysis [16] on natural language
requirements. We developed our own tools using the Python
natural language tool kit [17] in accordance with the algorithm
1.

Algorithm 1 Generation of UTP models from requirements
in natural language
Require: Input: documents which have been morphologically analyzed and dependency parsed

PT: Parsed Tree in requirements
R1: Generation rule #1
RS: Generation rule #1 structure of text as pattern
R2: Generation rule #2

Ensure:
1: for all PT do
2: mat← return(searchRSforallPT)

3: if mat == TRUE then
4: mat2← return(searchNNforallPTbyR1)

5: if mat2 == TRUE then
6: determine state and store the NN as ”subject” (NN1)
7: mat3← return(searchVBZforallPTbyR1)

8: if mat3 == TRUE then
9: determine the VBZ as ”verb”
10: mat4← return(searchNNforallPTbyR1)

11: if mat4 == TRUE then
12: determine and store the NN as ”adjective”(NN2)
13: end if
14: end if
15: end if
16: end if
17: end for
18: for all PT do
19: mat← return(searchRSforallPT)

20: if mat == TRUE then
21: mat2← return(searchNNforallPTbyR1)

22: if mat2 == TRUE then
23: determine and store the NN as ”subject”(NN1)
24: mat5← return(searchtheNNinNN1andNN2byR2)

25: if mat5 == TRUE then
26: mat3← return(searchVBZforallPTbyR1)

27: if mat3 == TRUE then
28: mat4← return(searchNNforallPTbyR1)

29: if mat4 == TRUE then
30: mat6← return(searchtheNNinNN1andNN2byR2)

31: if mat4 == TRUE then
32: determine the VBZ is ”message”
33: end if
34: end if
35: end if
36: end if
37: end if
38: end if
39: end for

B. Experiments
We evaluate our prototype in two case studies:
• Requirements: ”UC-01. Add new link” [8]. Table II

shows the requirements. We call this case study GEN.
• Section 2-1 of requirements: ”a detailed system design

specification for the coordinated highways action re-
sponse team (CHART) mapping applications” [15]. Table
I shows the requirements. We call this case study CHART.

GEN is a template use case in related work [8]. CHART is
the requirements of the coordinated highways action response
team.

We also evaluate the required time to generate UTP models
from requirements in natural language. We compare between
a manual approach and our automatic approach. The manual
approach is executed by a software testing expert who has
21 years experience in software development and testing.
The automatic approach is executed by the proof-of-concept
prototype of our approach.

C. Evaluation
We have evaluated the results of the automatically gener-

ated UTP models by software testing experts’ reviews. The

 * (subject) * (verb) * (adjective) *
cardinality:
[0..] [1..] [0..] [1..] [0..] [1..] [0..]

 * NN1 * VBZ * NN2 *

NP

NP VP

S

Fig. 6. Parse tree of a generation rule

definition of the class diagrams is the same as the related
work. We then can reuse the rules in our generation technique.
In UTP models, however, messages of the sequences are
necessary. In order to get messages of the sequences, it is
necessary to get actions between the classes. We develop new
rules to get action information between classes. The approach
toward the rules is that the verb between the names of classes
is the actions between the classes.

UTP model generation rules are:
• Rule #1: Class generation rule

a. Subject is generated to class
b. Verb is generated to action
c. Complement is argument
d. Structure of text as tree bank expression as (2). The

asterisk in the parenthesis means any part-of-speech.
When there are requirements texts, which have this
structure,
∗ NN1 is generated to class
∗ VBZ is generated to action
∗ NN2 is generated to attribute

S(NP ((∗)(NN1)(∗))V P (V BZ)(NP ((∗)(NN2)(∗)))
(2)

• Rule #2: Messages between classes generation rule
a. When NN1 and NN2 have already been determined

as classes, VBZ is the message from NN1 to NN2
• Rule #3: Order of sequence is equal to order of descrip-

tion in the requirements
Figure 6 shows parsed tree of (2).

V. EXPERIMENTS AND EVALUATIONS

A. Implementation

We implemented a proof-of-concept prototype of our ap-
proach. We used the English Natural Language Processing
parser [2] and dependency analysis [16] on natural language
requirements. We developed our own tools using the Python
natural language tool kit [17] in accordance with the algorithm
1.

Algorithm 1 Generation of UTP models from requirements
in natural language
Require: Input: documents which have been morphologically analyzed and dependency parsed

PT: Parsed Tree in requirements
R1: Generation rule #1
RS: Generation rule #1 structure of text as pattern
R2: Generation rule #2

Ensure:
1: for all PT do
2: mat← return(searchRSforallPT)

3: if mat == TRUE then
4: mat2← return(searchNNforallPTbyR1)

5: if mat2 == TRUE then
6: determine state and store the NN as ”subject” (NN1)
7: mat3← return(searchVBZforallPTbyR1)

8: if mat3 == TRUE then
9: determine the VBZ as ”verb”
10: mat4← return(searchNNforallPTbyR1)

11: if mat4 == TRUE then
12: determine and store the NN as ”adjective”(NN2)
13: end if
14: end if
15: end if
16: end if
17: end for
18: for all PT do
19: mat← return(searchRSforallPT)

20: if mat == TRUE then
21: mat2← return(searchNNforallPTbyR1)

22: if mat2 == TRUE then
23: determine and store the NN as ”subject”(NN1)
24: mat5← return(searchtheNNinNN1andNN2byR2)

25: if mat5 == TRUE then
26: mat3← return(searchVBZforallPTbyR1)

27: if mat3 == TRUE then
28: mat4← return(searchNNforallPTbyR1)

29: if mat4 == TRUE then
30: mat6← return(searchtheNNinNN1andNN2byR2)

31: if mat4 == TRUE then
32: determine the VBZ is ”message”
33: end if
34: end if
35: end if
36: end if
37: end if
38: end if
39: end for

B. Experiments
We evaluate our prototype in two case studies:
• Requirements: ”UC-01. Add new link” [8]. Table II

shows the requirements. We call this case study GEN.
• Section 2-1 of requirements: ”a detailed system design

specification for the coordinated highways action re-
sponse team (CHART) mapping applications” [15]. Table
I shows the requirements. We call this case study CHART.

GEN is a template use case in related work [8]. CHART is
the requirements of the coordinated highways action response
team.

We also evaluate the required time to generate UTP models
from requirements in natural language. We compare between
a manual approach and our automatic approach. The manual
approach is executed by a software testing expert who has
21 years experience in software development and testing.
The automatic approach is executed by the proof-of-concept
prototype of our approach.

C. Evaluation
We have evaluated the results of the automatically gener-

ated UTP models by software testing experts’ reviews. The

InSTA 2016	

TABLE I
REQUIREMENTS IN CHART SYSTEM [15].

SEQ# CHART 2-1.
1: The Listener provides a conduit between the CHART II application

and the Mapping software.
2: The Listener detects CHART II CORBA events and writes the

appropriate data to the Mapping database as events come in.
3: The existing Listener, called the CHARTWeb Listener, already

listens for CORBA events from CHART II pertaining to Traffic
Events, DMSs, and TSSs.

4: They also have a ”lollipop” interface icon extending up from them,
as sometimes the grey does not show up in printed copies.

5: The class diagram shows a threesome of classes for each of the
object types to be handled.

6: The Module is the top-level class for each object type.
7: The Module sets up the PushReceiver class to receive CORBA

events from the CHART II Event Service pertaining to the
appropriate object type, and upon receipt of these CORBA events
the PushReceiver calls the appropriate helper methods of the
DatabaseHelper to make the appropriate updates to the web
database.

8: Each resource has a unique ID by which it is referred to in future
CORBA Events.

9: Note that resources are not routinely deleted when a resource
departs the scene; the Departure TimeStamp will be updated and
the record will be left intact.

10: When a traffic event is finally deleted, its associated resources will
be deleted as well.

11: The message indication will indicate only whether there is a non-
default message on the HAR or not.

12: It will not provide an indication of what the message is, since it
is an audio message.

13: This is because of the non-guaranteed nature of CORBA events,
which raises the possibility that the local database may get out of
synch with the CHART II database.

14: A refresh for a particular class of objects will be completed in one
database transaction, so that in the likely case that nothing has
changed, there will be no ”flicker” of activity detectable through
the web database.

15: Event processing for all object types will be made more robust,
in that if a CORBA Event is received pertaining to an update for
a device or traffic event that does not exist in the Web database,
the Listener will attempt to actively collect the missing item data
from the appropriate CHART II service and then proceed with the
update if necessary.

TABLE II
TEMPLATE FOR THE USE CASE IN [6].

Name UC-01. Add new link
Main sequence 1. The user selects the option: add a new link.

2. The system selects the“ top”category and
shows the form to introduce the information of
a link (SR-02).
3. The user introduces information of the new
link and presses the insert button.
4. The system stores the new link.

Errors and alterna-
tives

4. If the link name or URL link is empty, the
system shows an error message and asks for
the value again.

Post condition The new link is stored into the system.

evaluation methods for each class, action, and attribute are as
follows:

• If the experiments generate classes, actions, and at-
tributes, and the experts review results that shall be

generated, the evaluation is True Positive (TP).
• If the experiments generate classes, actions, and at-

tributes, and the experts review results that shall not be
generated, the evaluation is False Positive (FP).

• If the experiments do not generate classes, actions, and
attributes, and the experts review results that shall be
generated, the evaluation is False Negative (FN).

We count the number of TP, FP, and FN. We calculate
Precision, Recall, and F-measure as (3)，(4)，and (5).

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F −Measure = 2× Precision× Recall
(Precision+Recall)

(5)

Table III shows the expert’s evaluation of the results of the
GEN and CHART case studies. Table IV shows the experiment
results of the GEN and CHART case studies.

D. Observations
Comparing minimum values of precision and recall at GEN

and CHART experiments, the values at GEN are greater than
the values at CHART. The requirements of GEN are originally
described for engineers to derive UTP models manually, so
this result shows that our automatic UTP models generation
technique can re-produce people’s derivations work. As a
result of CHART experiments, it is also greater than or equal
to 0.75, except for the values of attributes in rule #1. This
also shows promise for our technique. The reason for 0.56 of
rule #1 about attributes during the CHART experiments is the
difference in the text tree between structures as an equation (2)
and CHART’s text structure. Attributes of UTP models should
be generated from NN2 in our generation rule; however, there
are more complex structures such as multiple NP in CHART’s
requirements. Another reason is due to the writing style of the
case study. The sentences are simply written as subject (NP)
and verb (VP) and are continued with more conditions and
actions for other information in the sentences.

Our approach is more effective for simple sentences in the
requirements. Expression 2 is based on a simple sentence. Our
approach is also effective for compound sentences. Compound
sentences consist of two or more simple sentences with
coordinating conjunctions; for example, and, or, but, and so
on. Compound sentences have the same structure as simple
sentences. We can apply our approach to each simple sentence
in compound sentences. It is, however, difficult to apply our
approach to complex sentences. Complex sentences consist of
two or more simple sentences with subordinating conjunctions;
for example, when, if, while, and so on. In complex sentences,
the subject, verb, or compliment is missing from each of the
simple sentences. Complex sentences do not have the same
structure as simple sentences. Therefore, it is difficult to apply
rule #1 of our approach to complex sentences.

Table V shows comparison results between the manual
approach and our approach in required time to generate

16
 	

V. Experiments and Evaluations - Experiments

§ Requirements ”UC-01. Add new link” in [8]

InSTA 2016	

17
 	

TABLE I
REQUIREMENTS IN CHART SYSTEM [15].

SEQ# CHART 2-1.
1: The Listener provides a conduit between the CHART II application

and the Mapping software.
2: The Listener detects CHART II CORBA events and writes the

appropriate data to the Mapping database as events come in.
3: The existing Listener, called the CHARTWeb Listener, already

listens for CORBA events from CHART II pertaining to Traffic
Events, DMSs, and TSSs.

4: They also have a ”lollipop” interface icon extending up from them,
as sometimes the grey does not show up in printed copies.

5: The class diagram shows a threesome of classes for each of the
object types to be handled.

6: The Module is the top-level class for each object type.
7: The Module sets up the PushReceiver class to receive CORBA

events from the CHART II Event Service pertaining to the
appropriate object type, and upon receipt of these CORBA events
the PushReceiver calls the appropriate helper methods of the
DatabaseHelper to make the appropriate updates to the web
database.

8: Each resource has a unique ID by which it is referred to in future
CORBA Events.

9: Note that resources are not routinely deleted when a resource
departs the scene; the Departure TimeStamp will be updated and
the record will be left intact.

10: When a traffic event is finally deleted, its associated resources will
be deleted as well.

11: The message indication will indicate only whether there is a non-
default message on the HAR or not.

12: It will not provide an indication of what the message is, since it
is an audio message.

13: This is because of the non-guaranteed nature of CORBA events,
which raises the possibility that the local database may get out of
synch with the CHART II database.

14: A refresh for a particular class of objects will be completed in one
database transaction, so that in the likely case that nothing has
changed, there will be no ”flicker” of activity detectable through
the web database.

15: Event processing for all object types will be made more robust,
in that if a CORBA Event is received pertaining to an update for
a device or traffic event that does not exist in the Web database,
the Listener will attempt to actively collect the missing item data
from the appropriate CHART II service and then proceed with the
update if necessary.

TABLE II
TEMPLATE FOR THE USE CASE IN [6].

Name UC-01. Add new link
Main sequence 1. The user selects the option: add a new link.

2. The system selects the“ top”category and
shows the form to introduce the information of
a link (SR-02).
3. The user introduces information of the new
link and presses the insert button.
4. The system stores the new link.

Errors and alterna-
tives

4. If the link name or URL link is empty, the
system shows an error message and asks for
the value again.

Post condition The new link is stored into the system.

evaluation methods for each class, action, and attribute are as
follows:

• If the experiments generate classes, actions, and at-
tributes, and the experts review results that shall be

generated, the evaluation is True Positive (TP).
• If the experiments generate classes, actions, and at-

tributes, and the experts review results that shall not be
generated, the evaluation is False Positive (FP).

• If the experiments do not generate classes, actions, and
attributes, and the experts review results that shall be
generated, the evaluation is False Negative (FN).

We count the number of TP, FP, and FN. We calculate
Precision, Recall, and F-measure as (3)，(4)，and (5).

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F −Measure = 2× Precision× Recall
(Precision+Recall)

(5)

Table III shows the expert’s evaluation of the results of the
GEN and CHART case studies. Table IV shows the experiment
results of the GEN and CHART case studies.

D. Observations
Comparing minimum values of precision and recall at GEN

and CHART experiments, the values at GEN are greater than
the values at CHART. The requirements of GEN are originally
described for engineers to derive UTP models manually, so
this result shows that our automatic UTP models generation
technique can re-produce people’s derivations work. As a
result of CHART experiments, it is also greater than or equal
to 0.75, except for the values of attributes in rule #1. This
also shows promise for our technique. The reason for 0.56 of
rule #1 about attributes during the CHART experiments is the
difference in the text tree between structures as an equation (2)
and CHART’s text structure. Attributes of UTP models should
be generated from NN2 in our generation rule; however, there
are more complex structures such as multiple NP in CHART’s
requirements. Another reason is due to the writing style of the
case study. The sentences are simply written as subject (NP)
and verb (VP) and are continued with more conditions and
actions for other information in the sentences.

Our approach is more effective for simple sentences in the
requirements. Expression 2 is based on a simple sentence. Our
approach is also effective for compound sentences. Compound
sentences consist of two or more simple sentences with
coordinating conjunctions; for example, and, or, but, and so
on. Compound sentences have the same structure as simple
sentences. We can apply our approach to each simple sentence
in compound sentences. It is, however, difficult to apply our
approach to complex sentences. Complex sentences consist of
two or more simple sentences with subordinating conjunctions;
for example, when, if, while, and so on. In complex sentences,
the subject, verb, or compliment is missing from each of the
simple sentences. Complex sentences do not have the same
structure as simple sentences. Therefore, it is difficult to apply
rule #1 of our approach to complex sentences.

Table V shows comparison results between the manual
approach and our approach in required time to generate

V. Experiments and Evaluations - Experiments

§  requirements: ”a detailed system design specification for the
coordinated highways action response team (CHART) mapping
applications” [15]

InSTA 2016	

18

§ We have evaluated the results of the automatically
generated UTP models by software testing experts'
reviews.

§ The evaluation methods for each class, action, and
attribute are as follows:

– If the experiments generate classes, actions, and
attributes, and the experts review results that shall be
generated, the evaluation is True Positive (TP).

– If the experiments generate classes, actions, and
attributes, and the experts review results that shall not
be generated, the evaluation is False Positive (FP).

– If the experiments do not generate classes, actions,
and attributes, and the experts review results that shall
be generated, the evaluation is False Negative (FN).

 	

V. Experiments and Evaluations - Evaluations

TABLE I
REQUIREMENTS IN CHART SYSTEM [15].

SEQ# CHART 2-1.
1: The Listener provides a conduit between the CHART II application

and the Mapping software.
2: The Listener detects CHART II CORBA events and writes the

appropriate data to the Mapping database as events come in.
3: The existing Listener, called the CHARTWeb Listener, already

listens for CORBA events from CHART II pertaining to Traffic
Events, DMSs, and TSSs.

4: They also have a ”lollipop” interface icon extending up from them,
as sometimes the grey does not show up in printed copies.

5: The class diagram shows a threesome of classes for each of the
object types to be handled.

6: The Module is the top-level class for each object type.
7: The Module sets up the PushReceiver class to receive CORBA

events from the CHART II Event Service pertaining to the
appropriate object type, and upon receipt of these CORBA events
the PushReceiver calls the appropriate helper methods of the
DatabaseHelper to make the appropriate updates to the web
database.

8: Each resource has a unique ID by which it is referred to in future
CORBA Events.

9: Note that resources are not routinely deleted when a resource
departs the scene; the Departure TimeStamp will be updated and
the record will be left intact.

10: When a traffic event is finally deleted, its associated resources will
be deleted as well.

11: The message indication will indicate only whether there is a non-
default message on the HAR or not.

12: It will not provide an indication of what the message is, since it
is an audio message.

13: This is because of the non-guaranteed nature of CORBA events,
which raises the possibility that the local database may get out of
synch with the CHART II database.

14: A refresh for a particular class of objects will be completed in one
database transaction, so that in the likely case that nothing has
changed, there will be no ”flicker” of activity detectable through
the web database.

15: Event processing for all object types will be made more robust,
in that if a CORBA Event is received pertaining to an update for
a device or traffic event that does not exist in the Web database,
the Listener will attempt to actively collect the missing item data
from the appropriate CHART II service and then proceed with the
update if necessary.

TABLE II
TEMPLATE FOR THE USE CASE IN [6].

Name UC-01. Add new link
Main sequence 1. The user selects the option: add a new link.

2. The system selects the“ top”category and
shows the form to introduce the information of
a link (SR-02).
3. The user introduces information of the new
link and presses the insert button.
4. The system stores the new link.

Errors and alterna-
tives

4. If the link name or URL link is empty, the
system shows an error message and asks for
the value again.

Post condition The new link is stored into the system.

evaluation methods for each class, action, and attribute are as
follows:

• If the experiments generate classes, actions, and at-
tributes, and the experts review results that shall be

generated, the evaluation is True Positive (TP).
• If the experiments generate classes, actions, and at-

tributes, and the experts review results that shall not be
generated, the evaluation is False Positive (FP).

• If the experiments do not generate classes, actions, and
attributes, and the experts review results that shall be
generated, the evaluation is False Negative (FN).

We count the number of TP, FP, and FN. We calculate
Precision, Recall, and F-measure as (3)，(4)，and (5).

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F −Measure = 2× Precision× Recall
(Precision+Recall)

(5)

Table III shows the expert’s evaluation of the results of the
GEN and CHART case studies. Table IV shows the experiment
results of the GEN and CHART case studies.

D. Observations
Comparing minimum values of precision and recall at GEN

and CHART experiments, the values at GEN are greater than
the values at CHART. The requirements of GEN are originally
described for engineers to derive UTP models manually, so
this result shows that our automatic UTP models generation
technique can re-produce people’s derivations work. As a
result of CHART experiments, it is also greater than or equal
to 0.75, except for the values of attributes in rule #1. This
also shows promise for our technique. The reason for 0.56 of
rule #1 about attributes during the CHART experiments is the
difference in the text tree between structures as an equation (2)
and CHART’s text structure. Attributes of UTP models should
be generated from NN2 in our generation rule; however, there
are more complex structures such as multiple NP in CHART’s
requirements. Another reason is due to the writing style of the
case study. The sentences are simply written as subject (NP)
and verb (VP) and are continued with more conditions and
actions for other information in the sentences.

Our approach is more effective for simple sentences in the
requirements. Expression 2 is based on a simple sentence. Our
approach is also effective for compound sentences. Compound
sentences consist of two or more simple sentences with
coordinating conjunctions; for example, and, or, but, and so
on. Compound sentences have the same structure as simple
sentences. We can apply our approach to each simple sentence
in compound sentences. It is, however, difficult to apply our
approach to complex sentences. Complex sentences consist of
two or more simple sentences with subordinating conjunctions;
for example, when, if, while, and so on. In complex sentences,
the subject, verb, or compliment is missing from each of the
simple sentences. Complex sentences do not have the same
structure as simple sentences. Therefore, it is difficult to apply
rule #1 of our approach to complex sentences.

Table V shows comparison results between the manual
approach and our approach in required time to generate

InSTA 2016	

19

§  Table III shows the expert’s evaluation of the results of the GEN and
CHART case studies. Table IV shows the experiment results of the GEN
and CHART case studies.

 	

V. Experiments and Evaluations - Evaluations

TABLE III
EXPERT EVALUATION OF RESULTS

Case
study

Number
of gen-
erated

False
Positive

False
Negative

GEN Rule #1
Class 4 0 1
Action 3 1 1
Attribute 3 1 1

Rule #2 Message 1 0 0

CHART Rule #1
Class 13 3 3
Action 12 4 4
Attribute 9 7 7

Rule #2 Message 6 2 1

TABLE IV
EXPERIMENT RESULTS

Case
study

Precision Recall F-
Measure

GEN Rule #1
Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule #2 Message 1.00 1.00 1.00

CHART Rule #1
Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule #2 Message 1.00 1.00 1.00

TABLE V
REQUIRED TIME COMPARISON (MINUTES)

Activities Manual Our approach
GEN CHART GEN CHART

Requirements analysis 28 62 1 1
UTP models deriving 8 33 1 1
Total 36 95 2 2
Reduction - - 94.4% 97.9%

UTP models. Activities of generation UTMP models were
divided into requirements analysis and derived UTP models.
Experiment environments have a 2.60 GHz CPU, 8GB mem-
ory, and use a natural language tool kit [17]. The manual
approach is executed by a software testing expert who has 21
years experiences in software development and testing. Our
approach reduces time from 94.4% to 97.9% corresponding
with the manual generation of UTP models. This required time
does not include the implementation time of our approach.
The implementation time is not continuous work. We therefore
ignore the implementation time in this evaluation. The results
of the required time reduction show the effectiveness of our
approach.

We determined that our technique could generate UTP
models automatically from requirements in natural language
with improvements in the text tree. As for future research,
we will develop more generation rules and apply more actual
industry case studies.

VI. CONCLUSION

We presented automatic generation test models from re-
quirements in natural language by focusing on descriptions
of test cases in UTP test behavior. We developed three rules

to generate test models from requirements by using natural
language processing techniques and experimented with our
approach on requirements in language that is considered
natural English. Our results for three case studies show the
promise of our approach.

We will use our approach to find vague requirements and
provide feedback in the early stage of the system development
process. In addition, we will construct new rules and grammar
for requirements descriptions. We will contribute to require-
ment engineering by developing new means to check whether
descriptions have vague or inconsistent requirements.

REFERENCES

[1] OMG, Unified Modeling Language Version 2.5, Object Management
Group Std., 2015.

[2] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Technical report, Stanford University, Tech. Rep., 2008.

[3] OMG, UML Testing Profile Version 1.2, Object Management Group Std.,
2014.

[4] R. Sharma, P. Srivastava, and K. Biswas, “From natural language
requirements to uml class diagrams,” in Artificial Intelligence for
Requirements Engineering (AIRE), 2015 IEEE Second International
Workshop on, Aug 2015, pp. 1–8.

[5] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal,
“Automatic generation of system test cases from use case
specifications,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, 2015, pp. 385–396. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2771812

[6] M. Fockel and J. Holtmann, “A requirements engineering methodology
combining models and controlled natural language,” in Model-Driven
Requirements Engineering Workshop (MoDRE), 2014 IEEE 4th Inter-
national. IEEE, 2014, pp. 67–76.

[7] O. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler, “Lips: An ide
for model driven engineering based on natural language processing,” in
Natural Language Analysis in Software Engineering (NaturaLiSE), 2013
1st International Workshop on. IEEE, 2013, pp. 31–38.

[8] J. J. Gutierrez, M. J. Escalona, M. Mejias, and J. Torres, “An approach
to generate test cases from use cases,” in Proceedings of the 6th
international conference on Web engineering. ACM, 2006, pp. 113–
114.

[9] W. Marc Florian, S. Ina, S. Markus, and M. Armin, “Uml testing profile
tutorial,” MBT User Conference, 2011.

[10] M. Sarma and R. Mall, “Automatic test case generation from uml
models,” in Information Technology, (ICIT 2007). 10th International
Conference on, Dec 2007, pp. 196–201.

[11] M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, “A
survey of model-driven testing techniques,” in Quality Software, 2009.
QSIC ’09. 9th International Conference on, Aug 2009, pp. 167–172.

[12] M. Aggarwal and S. Sabharwal, “Test case generation from uml state
machine diagram: A survey,” in Computer and Communication Technol-
ogy (ICCCT), 2012 Third International Conference on, Nov 2012, pp.
133–140.

[13] A. Bagnato, A. Sadovykh, E. Brosse, and T. E. J. Vos, “The omg uml
testing profile in use–an industrial case study for the future internet
testing,” in Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, March 2013, pp. 457–460.

[14] S. Masuda, F. Iwama, N. Hosokawa, T. Matsuodani, and K. Tsuda,
“Semantic analysis technique of logics retrieval for software testing from
specification documents,” in Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2015 IEEE Eighth International Conference
on, April 2015, pp. 1–6.

[15] M. S. H. Administration, “Detailed system design specification for the
coordinated highways action response team (chart) mapping applica-
tions,” http://www.chart.state.md.us/, 2003.

[16] M.-C. De Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter,
J. Nivre, and C. D. Manning, “Universal stanford dependencies: A cross-
linguistic typology,” in Proceedings of LREC, 2014, pp. 4585–4592.

[17] N. Project, “Natural language toolkit,” http://www.nltk.org/, 2015.
[Online]. Available: http://www.nltk.org/

InSTA 2016	

20
 	

1. The evaluations of GEN are greater than
equal to 0.75

–  Our automatic UTP models generation
technique can re-produce people’s
derivations work.

2. The evaluations of CHART are greater than
equals to 0.75 except attribute evaluation．

– This also shows promise for our technique．

V. Experiments and Evaluations - Observations

InSTA 2016	

21
 	

3.  The reason for 0.56 of rule #1 about attributes
during the CHART experiments:

– the difference in the text tree between structures
as an equation (2) and CHART’s text structure
• there are more complex structures such as
multiple NP in CHART’s requirements

– the writing style of the case study
• The sentences are simply written as subject (NP)
and verb (VP) and are continued with more
conditions and actions for other information in
the sentences ．

V. Experiments and Evaluations - Observations

InSTA 2016	

22
 	

4.  Our approach is more effective for simple sentences
in the requirements. Our approach is also effective
for compound sentences. Compound sentences
have the same structure as simple sentences.

5.  Difficult to apply our approach to complex
sentences.

–  Complex sentences consist of two or more simple
sentences with subordinating conjunctions; for
example, when, if, while, and so on.

6.  Table V shows comparison results between the
manual approach and our approach in required time
to generate

V. Experiments and Evaluations - Observations

InSTA 2016	

23

§ We presented automatic generation test models
from requirements in natural language by focusing
on descriptions of test cases in UTP test behavior.

§ We developed three rules to generate test models
§ We have experimented and evaluated it

VI. Conclusion

InSTA 2016	

24

References

TABLE III
EXPERT EVALUATION OF RESULTS

Case
study

Number
of gen-
erated

False
Positive

False
Negative

GEN Rule #1
Class 4 0 1
Action 3 1 1
Attribute 3 1 1

Rule #2 Message 1 0 0

CHART Rule #1
Class 13 3 3
Action 12 4 4
Attribute 9 7 7

Rule #2 Message 6 2 1

TABLE IV
EXPERIMENT RESULTS

Case
study

Precision Recall F-
Measure

GEN Rule #1
Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule #2 Message 1.00 1.00 1.00

CHART Rule #1
Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule #2 Message 1.00 1.00 1.00

TABLE V
REQUIRED TIME COMPARISON (MINUTES)

Activities Manual Our approach
GEN CHART GEN CHART

Requirements analysis 28 62 1 1
UTP models deriving 8 33 1 1
Total 36 95 2 2
Reduction - - 94.4% 97.9%

UTP models. Activities of generation UTMP models were
divided into requirements analysis and derived UTP models.
Experiment environments have a 2.60 GHz CPU, 8GB mem-
ory, and use a natural language tool kit [17]. The manual
approach is executed by a software testing expert who has 21
years experiences in software development and testing. Our
approach reduces time from 94.4% to 97.9% corresponding
with the manual generation of UTP models. This required time
does not include the implementation time of our approach.
The implementation time is not continuous work. We therefore
ignore the implementation time in this evaluation. The results
of the required time reduction show the effectiveness of our
approach.

We determined that our technique could generate UTP
models automatically from requirements in natural language
with improvements in the text tree. As for future research,
we will develop more generation rules and apply more actual
industry case studies.

VI. CONCLUSION

We presented automatic generation test models from re-
quirements in natural language by focusing on descriptions
of test cases in UTP test behavior. We developed three rules

to generate test models from requirements by using natural
language processing techniques and experimented with our
approach on requirements in language that is considered
natural English. Our results for three case studies show the
promise of our approach.

We will use our approach to find vague requirements and
provide feedback in the early stage of the system development
process. In addition, we will construct new rules and grammar
for requirements descriptions. We will contribute to require-
ment engineering by developing new means to check whether
descriptions have vague or inconsistent requirements.

REFERENCES

[1] OMG, Unified Modeling Language Version 2.5, Object Management
Group Std., 2015.

[2] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Technical report, Stanford University, Tech. Rep., 2008.

[3] OMG, UML Testing Profile Version 1.2, Object Management Group Std.,
2014.

[4] R. Sharma, P. Srivastava, and K. Biswas, “From natural language
requirements to uml class diagrams,” in Artificial Intelligence for
Requirements Engineering (AIRE), 2015 IEEE Second International
Workshop on, Aug 2015, pp. 1–8.

[5] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal,
“Automatic generation of system test cases from use case
specifications,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, 2015, pp. 385–396. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2771812

[6] M. Fockel and J. Holtmann, “A requirements engineering methodology
combining models and controlled natural language,” in Model-Driven
Requirements Engineering Workshop (MoDRE), 2014 IEEE 4th Inter-
national. IEEE, 2014, pp. 67–76.

[7] O. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler, “Lips: An ide
for model driven engineering based on natural language processing,” in
Natural Language Analysis in Software Engineering (NaturaLiSE), 2013
1st International Workshop on. IEEE, 2013, pp. 31–38.

[8] J. J. Gutierrez, M. J. Escalona, M. Mejias, and J. Torres, “An approach
to generate test cases from use cases,” in Proceedings of the 6th
international conference on Web engineering. ACM, 2006, pp. 113–
114.

[9] W. Marc Florian, S. Ina, S. Markus, and M. Armin, “Uml testing profile
tutorial,” MBT User Conference, 2011.

[10] M. Sarma and R. Mall, “Automatic test case generation from uml
models,” in Information Technology, (ICIT 2007). 10th International
Conference on, Dec 2007, pp. 196–201.

[11] M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, “A
survey of model-driven testing techniques,” in Quality Software, 2009.
QSIC ’09. 9th International Conference on, Aug 2009, pp. 167–172.

[12] M. Aggarwal and S. Sabharwal, “Test case generation from uml state
machine diagram: A survey,” in Computer and Communication Technol-
ogy (ICCCT), 2012 Third International Conference on, Nov 2012, pp.
133–140.

[13] A. Bagnato, A. Sadovykh, E. Brosse, and T. E. J. Vos, “The omg uml
testing profile in use–an industrial case study for the future internet
testing,” in Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, March 2013, pp. 457–460.

[14] S. Masuda, F. Iwama, N. Hosokawa, T. Matsuodani, and K. Tsuda,
“Semantic analysis technique of logics retrieval for software testing from
specification documents,” in Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2015 IEEE Eighth International Conference
on, April 2015, pp. 1–6.

[15] M. S. H. Administration, “Detailed system design specification for the
coordinated highways action response team (chart) mapping applica-
tions,” http://www.chart.state.md.us/, 2003.

[16] M.-C. De Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter,
J. Nivre, and C. D. Manning, “Universal stanford dependencies: A cross-
linguistic typology,” in Proceedings of LREC, 2014, pp. 4585–4592.

[17] N. Project, “Natural language toolkit,” http://www.nltk.org/, 2015.
[Online]. Available: http://www.nltk.org/

TABLE III
EXPERT EVALUATION OF RESULTS

Case
study

Number
of gen-
erated

False
Positive

False
Negative

GEN Rule #1
Class 4 0 1
Action 3 1 1
Attribute 3 1 1

Rule #2 Message 1 0 0

CHART Rule #1
Class 13 3 3
Action 12 4 4
Attribute 9 7 7

Rule #2 Message 6 2 1

TABLE IV
EXPERIMENT RESULTS

Case
study

Precision Recall F-
Measure

GEN Rule #1
Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule #2 Message 1.00 1.00 1.00

CHART Rule #1
Class 1.00 0.80 0.89
Action 0.75 0.75 0.75
Attribute 0.75 0.75 0.75

Rule #2 Message 1.00 1.00 1.00

TABLE V
REQUIRED TIME COMPARISON (MINUTES)

Activities Manual Our approach
GEN CHART GEN CHART

Requirements analysis 28 62 1 1
UTP models deriving 8 33 1 1
Total 36 95 2 2
Reduction - - 94.4% 97.9%

UTP models. Activities of generation UTMP models were
divided into requirements analysis and derived UTP models.
Experiment environments have a 2.60 GHz CPU, 8GB mem-
ory, and use a natural language tool kit [17]. The manual
approach is executed by a software testing expert who has 21
years experiences in software development and testing. Our
approach reduces time from 94.4% to 97.9% corresponding
with the manual generation of UTP models. This required time
does not include the implementation time of our approach.
The implementation time is not continuous work. We therefore
ignore the implementation time in this evaluation. The results
of the required time reduction show the effectiveness of our
approach.

We determined that our technique could generate UTP
models automatically from requirements in natural language
with improvements in the text tree. As for future research,
we will develop more generation rules and apply more actual
industry case studies.

VI. CONCLUSION

We presented automatic generation test models from re-
quirements in natural language by focusing on descriptions
of test cases in UTP test behavior. We developed three rules

to generate test models from requirements by using natural
language processing techniques and experimented with our
approach on requirements in language that is considered
natural English. Our results for three case studies show the
promise of our approach.

We will use our approach to find vague requirements and
provide feedback in the early stage of the system development
process. In addition, we will construct new rules and grammar
for requirements descriptions. We will contribute to require-
ment engineering by developing new means to check whether
descriptions have vague or inconsistent requirements.

REFERENCES

[1] OMG, Unified Modeling Language Version 2.5, Object Management
Group Std., 2015.

[2] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Technical report, Stanford University, Tech. Rep., 2008.

[3] OMG, UML Testing Profile Version 1.2, Object Management Group Std.,
2014.

[4] R. Sharma, P. Srivastava, and K. Biswas, “From natural language
requirements to uml class diagrams,” in Artificial Intelligence for
Requirements Engineering (AIRE), 2015 IEEE Second International
Workshop on, Aug 2015, pp. 1–8.

[5] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal,
“Automatic generation of system test cases from use case
specifications,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, 2015, pp. 385–396. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2771812

[6] M. Fockel and J. Holtmann, “A requirements engineering methodology
combining models and controlled natural language,” in Model-Driven
Requirements Engineering Workshop (MoDRE), 2014 IEEE 4th Inter-
national. IEEE, 2014, pp. 67–76.

[7] O. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler, “Lips: An ide
for model driven engineering based on natural language processing,” in
Natural Language Analysis in Software Engineering (NaturaLiSE), 2013
1st International Workshop on. IEEE, 2013, pp. 31–38.

[8] J. J. Gutierrez, M. J. Escalona, M. Mejias, and J. Torres, “An approach
to generate test cases from use cases,” in Proceedings of the 6th
international conference on Web engineering. ACM, 2006, pp. 113–
114.

[9] W. Marc Florian, S. Ina, S. Markus, and M. Armin, “Uml testing profile
tutorial,” MBT User Conference, 2011.

[10] M. Sarma and R. Mall, “Automatic test case generation from uml
models,” in Information Technology, (ICIT 2007). 10th International
Conference on, Dec 2007, pp. 196–201.

[11] M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, “A
survey of model-driven testing techniques,” in Quality Software, 2009.
QSIC ’09. 9th International Conference on, Aug 2009, pp. 167–172.

[12] M. Aggarwal and S. Sabharwal, “Test case generation from uml state
machine diagram: A survey,” in Computer and Communication Technol-
ogy (ICCCT), 2012 Third International Conference on, Nov 2012, pp.
133–140.

[13] A. Bagnato, A. Sadovykh, E. Brosse, and T. E. J. Vos, “The omg uml
testing profile in use–an industrial case study for the future internet
testing,” in Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, March 2013, pp. 457–460.

[14] S. Masuda, F. Iwama, N. Hosokawa, T. Matsuodani, and K. Tsuda,
“Semantic analysis technique of logics retrieval for software testing from
specification documents,” in Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2015 IEEE Eighth International Conference
on, April 2015, pp. 1–6.

[15] M. S. H. Administration, “Detailed system design specification for the
coordinated highways action response team (chart) mapping applica-
tions,” http://www.chart.state.md.us/, 2003.

[16] M.-C. De Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter,
J. Nivre, and C. D. Manning, “Universal stanford dependencies: A cross-
linguistic typology,” in Proceedings of LREC, 2014, pp. 4585–4592.

[17] N. Project, “Natural language toolkit,” http://www.nltk.org/, 2015.
[Online]. Available: http://www.nltk.org/

InSTA 2016	

25

The end of presentation

