10, Apr. 2016, InSTA2016

Automatic Generation of UTP
Models from Requirements in
Natural Language

Satoshi Masuda, IBM Research — Tokyo
Tohru Matsuodani, Debug Engineering Research Laboratory
Kazuhiko Tsuda, University of Tsukuba

InSTA 2016

I. Introduction ...:.1
II. Background and Approach

A. UML. Testing Profile (UTP)

B. Natural Language Processing
III.Related Works

IV.Automatic Generation of UTP
Models from Requirements

V. Experiments and Evaluations
VI.Conclusion

InSTA 2016

Summary 1‘

= Requirements in language that
is considered natural English

= Focusing on descriptions of
test cases in UTP test behavior

= Automatic generation test
models from requirements

InSTA 2016

= UTP is the definition of the modeling test from
requirements anaIyS|s for software testing. [3] \'R\

Requirements
in natural language

interpre lnterprets\

System @ Test Automatic]
Developmer’ Engmeer Generatlon
Engineer lderive derzv
/
UML . UTP
1 requirements, use cases, del
models interfaces, type definitions models
System Cod Test Code
Derivation Generation
Test Execution
< _________________________________
System (Under Test)

Fig. 1. Generation of UTP from requirement by editing the figure in [3]

[3] Object Management Group, "UML Testing Profile(UTP) Version 1.2 ",
[5] OMG, UML Testing Profile Version 1.2, Object Management Group Std., 2014.

II. Background and Approach - UTP wsmu

= UTP has test architecture, test behavior, test
data, and time concepts as the test models.

Test Architecture Test Data
*System Under Test *Data Partition
*Test Component *Data Pool
etc. etc.
Test Behavior Test Management
*Test Case * Test Planning and
*Time-related Concepts Scheduling
Discussing W‘C- .
in this
paper Fig. 2. UTP definition overview

[3] Object Management Group, "UML Testing Profile(UTP) Version 1.2 ", http://www.omg.org/spec/UTP/1.2/

InSTA 2016

= Natural Language Processing (NLP) techniques
include parsing, morphological analysis. \,ﬁ\

=For example, the sentence consists of NP and
VP, and NP consists of DT and NN. S:
sentence, NP: noun phrase, VP: verb phrase,
NN: noun, VBZ: verb bghavior,

T

NP VP

NS

DT NN VBZ DT JJ] NN

The system stores the new link.

Fig. 4. Parse tree of 'The system stores the new link.’

II. Background and Approach

= Example UTP test cases

r/ Users Action System
Class i

Activity 01 click(*link™."LinkNew.jsp”)
B | Attribute
Activity 03

SetField(*name™, TestLink™)

SetField(*URL”."www.testlink.com™)

SetField(*Description™,”A test link™)

b

click("button™, "msert”)

Y —

R JUNE 2UNE 20NN 2NN 2R

Fig. 3. Example UTP test cases for editing the figure in [6]

InSTA 2016

= S are sentences of the requirements in natural languages, \ 2

= U (cl, ac, ar) are activities of the sequence diagram in UTP
test cases which consist of classes (cl), actions (ac), and
attributes (at), and

= G are generation rules from S (requirements) into
U(classes, actions, and attributes).

Users System S

| W

Activity 01 ; click(*link™,"LinkNew.jsp™) /\

s .
. J/~
Activil — NP
U(cl,ac,at)= | G |- /\ S Xx_
. 3T N = pT
tclick("buton’"insert") . generation The system stores the new link.
- rules

l i SetField(*Description™,"A test link")

InSTA 2016

» Test Case Generation from UML Models

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Automatic Test Case Generation from UML Models

Monalisa Sarma Rajib Mall
Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

WB 721302, Indian Institute of Technology Kharagpur WB 721302, Indian Institute of Technology Kharagpur
monalisas@cse.iitkgp.ernet.in rajib@cse.iitkgp.ernet.in
a : cardReader | | b : sessionMgr | | c : displayMgr | | d : keyReader | | e : aBank

<20y

€30)

es5()

(a) Sequence diagram of PIN Authentication use case in an ATM system

cardInfo()

[!validATMcard] cl()

ml()

m2() | cjectO |]
checkCard() . .
3
status m30)
status. 1
m: ai /|

StateX

J!validPIN && try = 4 c4()
requestPINO
>
m5()
readPINQ r
valuePIN m6() . -I
-€
verify PINQ)
1 N =7 o T
) ejectO x X
displayHelloO

o S

<scn; <scn, <scn; <scny

StateX StateX StateX StateX

sl: (my, a, b) sl: (my, a, b) sl: (my, a, b) sl: (my, a, b)

s2: (my, b, a) |cl s3: (ms, b, €) s3: (ms, b, €) s3: (ms, b, €)

StateY> s4: (my, b, a)|c2 $5: (my, b, a)|c3 $6: (ms, b, c)|c4*
StateY> StateY> s7: (mg, b, d)|c4*

s8: (my, b, e)|c4*
$9: (my, b, a)|c5 StateY>
(c) Five operation scenarios represented in the form of quadruples

StateY

StateZ

(b) SDG of the sequence diagram in

<sCnjs

StateX

sl: (my, a, b)

s3: (ms, b, €)

s6: (ms, b, c)|c4*

s7: (mg, b, d)|c4*

s8: (my, b, e)|c4*

s10: (mg, b, c) StateZ>

InSTA 2016

= Automatic Generation of
System Test Cases from Use
Case Specifications

Automatic Gengrafionof System Test Gasesfrom g
(ase Specications

ik
mhoug
Pa san

Chunhu Wangr,Fabnzo Pstore’, Arda Gkl Lioel B, Zohalb i
e

iy et for ety Ry and Tust, Unvert of Lot L
et L, NaonlUnversy ofCompute & Emerging Seienes FAST NU), Samaba
Chunhu gz astor .o onel) Gurilu zohabighe@n. ek

10

TH NC if

TH IN¢ di

|| T THI H|

THI ST}

THI L
Use Cases {} !
List of a ””””””””””

5. Identify Constraints hélrllstftlllé%

NO ERROR
TEMPARATURE IS VALID
MEASUREMENTS IN LIMITS

Constraints List

NO ERROR: errNo =0

_Generate th <: TEMPARATURE IS VALID: t >=0
=) stgec f s e‘ t% etqteM odel MEASUREMENTS IN LIMIT..
ad S

{} OCL Constraints
Use Case 8. Generate
Test l:> Scenarios and Inputs
Model [3] -
[4]
9 Specify Mappmg Table - -
””””””””””””””” Object (5] - Use Case
Dlagrams ﬂ 4 Scenarios
Legend Mappmg Table
\:> data flow

10. Generate Test Cases <:
LT the software engineer @
Test Cases
ISy activity automated by

®
UMTG
Figure 1: Overview of the UMTG Approachw

1. Step! activity performed by

InSTA 2016

= From the first step of the flow, we get parsed text, parts-of-speech,
and dependency from requirements by using natural language

processing techniques. =
= In the next steps, we generate UTP models from them by applying

rules of generation.
Requirements in
natural languag

Natural Language
Processing

/ Parsed tex// Part of // Dependen7/
speech
Rules of
generation

Generation <=

/ UTP models /

Fig. 5. Automatic generation of UTP models from requirements in natural language

11

InSTA 2016

=Generation rules
*Rule #1: Class generation rule
a. Subject is generated to class
b. Verb is generated to action
c. Complement is argument

e.g.

12

Subject

|

Verb

\

“The user selects the option in menu.”

u

L

Complement

InSTA 2016

s(Generation rules

‘Rule #1: Class generation rule \/n\
d. Structure of text as tree bank expression

as (2) /9\
NP

VP
\
/f\

* NNI % VBZ * NN2 *

=

* (subject)

S (NP (()(NNT) (%)) VP (VBZ)(NP ((*)(NN2)(%))) (2)

(verb) * (adjective) *

13

InSTA 2016

=Generation rules (continued)

*Rule #2: Messages between classes
generation rule

a. When NN1 and NN2 have already

been determined as classes, VBZ is
the message from NN1 to NN2

« Rule #3: Order of sequence is equal to
order of description in the requirements

L

InSTA 2016

» Implementation
—Algorithm

Algorithm 1 Generation of UTP models from requirements

in natural language

Require: Input: documents which have been morphologically analyzed and dependency parsed

PT: Parsed Tree in requirements
R1: Generation rule #1
RS: Generation rule #1 structure of text as pattern
R2: Generation rule #2
Ensure:
1: for all PT do
2: mat < return(searchRS forallPT)
3: ifmat == TRUE then
4: mat2 < return(searchNN forallPTbyR1)
3: if mat2 == TRUE then
6: determine state and store the NN as ”subject” (NN1)
7 mat3 < return(searchVBZ forallPTbyR1)
8 if mat3 == TRUE then
9 determine the VBZ as "verb”

10: matd < return(searchNN forallPTbyR1)
11: if mat4 == T RUE then

12: determine and store the NN as “adjective”(NN2)

13: end if

14: end if

15: end if

16: endif

17: end for

18: for all PT do

15

19: mat < return(searchRS forallPT)

20: ifmat == TRUE then

21: mat2 < return(searchNN forallPTbyR1)

22: if mat2 == T RUE then

23: determine and store the NN as ”subject”(NN1)

24 math < return(searchtheNNinNN1landNN2byR2)
25: if mat5 == TRUE then

26: mat3 < return(searchVBZforallPTbyR1)
27: if mat3 == TRUE then

28: matd < return(searchNN forallPTbyR1)
29: if mat4 == TRUE then

30: mat6 < return(searchtheNNinNN1landNN2byR2)
31: if matd == TRUE then

32: determine the VBZ is ”message”

33: end if

34: end if

35: end if

36: end if

37: end if

38: endif

39: end for

InSTA 2016

» Requirements "UC-01. Add new link” in [8]

Name

UC-01. Add new link \/u\

Main sequence

1. The user selects the option: add a new link.

2. The system selects the “top~ category and
shows the form to introduce the information of
a link (SR-02).

3. The user introduces information of the new
link and presses the insert button.

4. The system stores the new link.

Errors and alterna-
tives

4. If the link name or URL link 1s empty, the
system shows an error message and asks for
the value again.

Post condition

The new link is stored into the system.

16

InSTA 2016

» requirements: "a detailed system design specification for the
coordinated highways action response team (CHART) mapping o
applications” [15] \’n\

SEQ# CHART 2-1.

I: The Listener provides a conduit between the CHART II application
and the Mapping software.

2: The Listener detects CHART II CORBA events and writes the
appropriate data to the Mapping database as events come in.

3: The existing Listener, called the CHARTWeb Listener, already
listens for CORBA events from CHART II pertaining to Traffic
Events, DMSs, and TSSs.

4: They also have a "lollipop” interface icon extending up from them,
as sometimes the grey does not show up in printed copies.

5: The class diagram shows a threesome of classes for each of the
object types to be handled.

6: The Module is the top-level class for each object type.

7: The Module sets up the PushReceiver class to receive CORBA
events from the CHART II Event Service pertaining to the
appropriate object type, and upon receipt of these CORBA events
the PushReceiver calls the appropriate helper methods of the
DatabaseHelper to make the appropriate updates to the web

17 database.

InSTA 2016

= We have evaluated the results of the automatically
generated UTP models by software testing experts' o
reviews. \’n\

» The evaluation methods for each class, action, and
attribute are as follows:

—If the experiments generate classes, actions, and
attributes, and the experts review results that shall be
generated, the evaluation is True Positive (TP).

—If the experiments generate classes, actions, and
attributes, and the experts review results that shall not
be generated, the evaluation is False Positive (FP).

—If the experiments do not generate classes, actions,
and attributes, and the experts review results that shall

be generated, the evaluation is False Negative (FN).
TP
(TP + FP)

TP
(TP + FN)

Precision =

Recall =

Recall
(Precision + Recall)

18 F — Measure = 2 X Precision X

InSTA 2016

19

= Table III shows the expert’s evaluation of the results of the GEN and

CHART case studies. Table IV shows the experiment results of the GEN

and CHART case studies.

TABLE II1
EXPERT EVALUATION OF RESULTS
Case Number False False
study of gen- Positive Negative
erated
Class 4 0 1
Rule #1 Action 3 1 1
GEN Attribute 3 1 1
Rule #2 Message 1 0 0
Class 13 3 3
Rule #1 Action 12 4 4
CHART Attribute 9 7 7
Rule #2 Message 6 2 1
TABLE IV
EXPERIMENT RESULTS
Case Precision Recall F-
study Measure
Class 1.00 0.80 0.89
GEN Rule #1 Actl?n 0.75 0.75 0.75
Attribute 0.75 0.75 0.75
Rule #2 Message 1.00 1.00 1.00
Class 1.00 0.80 0.89
Rule #1 Action 0.75 0.75 0.75
CHART Attribute 0.75 0.75 0.75
Rule #2 Message 1.00 1.00 1.00

L

InSTA 2016

1. The evaluations of GEN are greater than \n
equal to 0.75

— Our automatic UTP models generation
technique can re-produce people’s
derivations work.

2. The evaluations of CHART are greater than
equals to 0.75 except attribute evaluation.

—This also shows promise for our technique.

InSTA 2016

3. The reason for 0.56 of rule #1 about attributes

21

during the CHART experiments:

—the difference in the text tree between structures
as an equation (2) and CHART's text structure

ethere are more complex structures such as
multiple NP in CHART's requirements

—the writing style of the case study

eThe sentences are simply written as subject (NP)
and verb (VP) and are continued with more
conditions and actions for other information in
the sentences .

InSTA 2016

4. Our approach is more effective for simple sentenc:E
in the requirements. Our approach is also effective
for compound sentences. Compound sentences
have the same structure as simple sentences.

5. Difficult to apply our approach to complex
sentences.

— Complex sentences consist of two or more simple
sentences with subordinating conjunctions; for
example, when, if, while, and so on.

6. Table V shows comparison results between the

manual approach and our approach in required time
to generate

22

InSTA 2016

= \We presented automatic generation test models
from requirements in natural language by focusing e
on descriptions of test cases in UTP test behavior. \/N

=\We developed three rules to generate test models
*\We have experimented and evaluated it

Requirements
in natural language

interpre interprets
Syst e Test Automatic
System ‘ ‘ :
Y Engineer Generation
Developmer | ‘ng

Engineer Idw'in'

R

; T T
/ UL requirements, use ca vir /
equirements, use cases,

o IS . - > o o AN
models interfaces, type definitions | "qu’
Sl'.\‘h‘lll Code . Test Code

Generation

Derivation v v

System (Under Test)
23

InSTA 2016

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

[9]

24

OMG, Unified Modeling Language Version 2.5, Object Management
Group Std., 2015.

M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Technical report, Stanford University, Tech. Rep., 2008.
OMG, UML Testing Profile Version 1.2, Object Management Group Std.,
2014.

R. Sharma, P. Srivastava, and K. Biswas, “From natural language
requirements to uml class diagrams,” in Artificial Intelligence for
Requirements Engineering (AIRE), 2015 IEEE Second International
Workshop on, Aug 2015, pp. 1-8.

C. Wang, F Pastore, A. Goknil, L. Briand, and Z. Iqgbal,
“Automatic generation of system test cases from use case
specifications,” in Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ser. ISSTA 2015. New
York, NY, USA: ACM, 2015, pp. 385-396. [Online]. Available:
http://doi.acm.org/10.1145/2771783.2771812

M. Fockel and J. Holtmann, “A requirements engineering methodology
combining models and controlled natural language,” in Model-Driven
Requirements Engineering Workshop (MoDRE), 2014 IEEE 4th Inter-
national. 1EEE, 2014, pp. 67-76.

O. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler, “Lips: An ide
for model driven engineering based on natural language processing,” in
Natural Language Analysis in Software Engineering (NaturaLiSE), 2013
Ist International Workshop on. 1EEE, 2013, pp. 31-38.

J. J. Gutierrez, M. J. Escalona, M. Mejias, and J. Torres, “An approach
to generate test cases from use cases,” in Proceedings of the 6th
international conference on Web engineering. ACM, 2006, pp. 113—
114.

W Marc Florian, S. Ina S Markus, and M. Armin, “Uml testing profile

1 aAanmoTT ANt 1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Sarma and R. Mall, “Automatic test case generation from uml
models,” in Information Technology, (ICIT 2007). 10th International
Conference on, Dec 2007, pp. 196-201.

M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, “A
survey of model-driven testing techniques,” in Quality Software, 2009.
QOSIC °09. 9th International Conference on, Aug 2009, pp. 167-172.
M. Aggarwal and S. Sabharwal, “Test case generation from uml state
machine diagram: A survey,” in Computer and Communication Technol-
ogy (ICCCT), 2012 Third International Conference on, Nov 2012, pp.
133-140.

A. Bagnato, A. Sadovykh, E. Brosse, and T. E. J. Vos, “The omg uml
testing profile in use—an industrial case study for the future internet
testing,” in Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, March 2013, pp. 457-460.

S. Masuda, F. Iwama, N. Hosokawa, T. Matsuodani, and K. Tsuda,
“Semantic analysis technique of logics retrieval for software testing from
specification documents,” in Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2015 IEEE Eighth International Conference
on, April 2015, pp. 1-6.

M. S. H. Administration, “Detailed system design specification for the
coordinated highways action response team (chart) mapping applica-
tions,” http://www.chart.state.md.us/, 2003.

M.-C. De Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter,
J. Nivre, and C. D. Manning, “Universal stanford dependencies: A cross-
linguistic typology,” in Proceedings of LREC, 2014, pp. 4585-4592.
N. Project, “Natural language toolkit,” http://www.nltk.org/, 2015.
[Online]. Available: http://www.nltk.org/

R T e

InSTA 2016

25

The end of presentation

